The Hubbard chain: Lieb-Wu equations and norm of the eigenfunctions

نویسندگان

  • F. Göhmann
  • V. E. Korepin
  • C. N. Yang
چکیده

We argue that the square of the norm of the Hubbard wave function is proportional to the determinant of a matrix, which is obtained by linearization of the Lieb-Wu equations around a solution. This means that in the vicinity of a solution the Lieb-Wu equations are non-degenerate, if the corresponding wave function is non-zero. We further derive an action that generates the LiebWu equations and express our determinant formula for the square of the norm in terms of the Hessian determinant of this action. PACS: 05.30.Fk; 71.10.Pm; 71.27.+a

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Ground State Energy of Hubbard Rings in the Atomic Limit

For the past forty-odd years the Hubbard model [1] has been used as a minimal model to describe manybody effects in solids. The model incorporates the competition between the delocalizing effects of the kinetic energy (with strength described by a hopping energy t) and the localizing effects of the electron-electron repulsion (with strength described by the on-site Coulomb energy U). The ratio ...

متن کامل

Strong coupling anomalous dimensions of N = 4 super

We study the strong coupling behaviour of fixed length single trace operators in the scalar SU(2) sector of N = 4 SYM. We assume the recently proposed connection with a twisted half-filled Hubbard model. By explicit direct diagonalization of operators with length L = 4, 6, 8 we study the full perturbative multiplet of those lattice states which have a clear correspondence with gauge theory comp...

متن کامل

Correspondence between probabilistic norms and fuzzy norms

In this paper, the connection between Menger probabilistic norms and H"{o}hle probabilistic norms is discussed. In addition, the correspondence between probabilistic norms and Wu-Fang fuzzy (semi-) norms is established. It is shown that a probabilistic norm (with triangular norm $min$) can generate a Wu-Fang fuzzy semi-norm and conversely, a Wu-Fang fuzzy norm can generate a probabilistic norm.

متن کامل

Algebraic Bethe ansatz for the gl(1|2) generalized model and Lieb-Wu equations

We solve the gl(1|2) generalized model by means of the algebraic Bethe ansatz. The resulting eigenvalue of the transfer matrix and the Bethe ansatz equations depend on three complex functions, called the parameters of the generalized model. Specifying the parameters appropriately, we obtain the Bethe ansatz equations of the supersymmetric t-J model, the Hubbard model, or of Yang’s model of elec...

متن کامل

Exact integrability of the one-dimensional Hubbard model.

We have recently shown (]) that the one-dimensional ( ld) Hubbard model possesses an infinite number of conservation laws by identifying a 2d classical statistical model for which a one-parameter family of transfer matrices commutes with the Hamiltonian. Reference2 contains a demonstrat ion that the one-parameter family of transfer matrices commute mutually and hence we have a new completely in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999